Acknowledgments. The authors wish to express their thanks to the Air Force Office of Scientific Research for partial support of this work under Grant AFOSR 62-231. The general support of the Advanced Research Projects Agency and the U. S. Atomic Energy Commission is also gratefully acknowledged.

Appendix

The jump frequency has been developed very generally by Vineyard¹² as

$$\Gamma = \left(\frac{\kappa T}{2\pi m}\right)^{1/2} \int_{\sigma} e^{-\varphi/RT} d\sigma / \int_{A} e^{-\varphi/RT} dA \quad (1a)$$

where φ is the potential energy for all the atoms in the crystal, A is an appropriate phase space volume taken at an atom neighboring a vacancy, and σ is an appropriate hypersurface taken at the saddle configuration of the jump. To a first approximation, A is the same for different jump directions in anisotropic systems; hence anisotropy must arise mostly from different σ_k for different jump types k. Thus (1a) becomes

$$\Gamma_k = \left(\frac{\kappa T}{2\pi m}\right)^{1/2} \int_{\sigma_k} e^{-\varphi/RT} \, d\sigma_k / \int_A e^{-\varphi/RT} \, dA \quad (2a)$$

Following Girifalco and Grimes, 11 expand φ in terms of the strains, ϵ_i , to first order, and define

$$m_i^k = \left\langle \frac{\partial \varphi}{\partial \epsilon_i} \right\rangle_{A} - \left\langle \frac{\partial \varphi}{\partial \epsilon_i} \right\rangle_{\sigma_k}$$
 (3a)

where $\langle \ \rangle$ denotes the usual statistical averages over A or σ_k . Now (2a) becomes

$$\Gamma_k(\epsilon) = \Gamma_k(0) \exp \left[\frac{1}{RT} \sum_i m_i^k \epsilon_i \right]$$
 (4a)

The vacancy concentration may be written analogously as

$$n_{\rm v}(\epsilon) = n_{\rm v}(0) \exp \left[\frac{1}{RT} \sum w_i \epsilon_i\right]$$
 (5a)

where

$$w_{i} = \left\langle \frac{\partial \varphi_{0}}{\partial \epsilon_{i}} \right\rangle - \left\langle \frac{\partial \varphi_{v}}{\partial \epsilon_{i}} \right\rangle \tag{6a}$$

Here φ_0 and φ_v are the potential energies of the crystal

without and with a vacancy, respectively. Note that w_i is independent of direction k.

From the zero strain expression $D_k(0) = \gamma_k a_k^2 n_v \cdot (0) \Gamma_k(0)$, the diffusion coefficient of the strained crystal is

$$D_k(\epsilon) = D_k(0)(1 + \epsilon_k)^2 \exp\left[\frac{1}{RT} \sum_i M_i^k \epsilon_i\right]$$
 (7a)

where

$$M_i^k = m_i^k + w_i \tag{8a}$$

The only unknown quantities in (7a) are the M_i^k . These may be found from

$$\frac{\partial \ln D_k(\epsilon)}{\partial \epsilon_i} - \frac{2\partial \ln (1 + \epsilon_k)}{\partial \epsilon_i} = \frac{M_i^k}{RT}$$
 (9a)

From elasticity theory we write $\epsilon_i = \sum_j s_{ij} P_j$, where the stress, P_j , is a force per unit area (pressure), and the s_{ij} are constants. Then (9a) becomes

$$\sum_{j} \frac{\partial \ln D_{k}(P)}{\partial P_{j}} - 2\sum_{j} s_{kj}/1 + \sum_{j} s_{kj}P_{j} = \sum_{i,j} \frac{M_{i}^{k} s_{ij}}{RT}$$
(10a)

From the Zener formalism²² we have

$$\frac{\partial \ln D_k(P)}{\partial P} - 2\sum_j s_{kj} = \frac{1}{RT} \sum_{i,j} \Delta V_{ij}^* - \sum_j s_{ij}$$
(11a)

so that

$$\sum_{i,j} \Delta V_{ij}^* = \sum_{i} (M_i^k + \gamma R T \delta_{ik}) s_i \quad (12a)$$

where δ_{ik} is the Kronacker delta, and we have set $1 + \sum_{j} s_{ij} P_j$ equal to unity, and where $\sum_{j} s_{ij} = S_i$. Summing (12a) over j gives ΔV^k in terms of strain components, ΔV_i^k , while a sum over i gives the stress components ΔV_j^k . Hydrostatic pressure measurements give only their sums so neither set is more significant.

The M_t^k will have the same relations as the s_{tf} . For example, for nonshear stresses, the x and y axes of tetragonal crystals are indistinguishable so that only five independent M_t^k remain, for instance, M_1^1 , M_2^1 , M_3^1 , M_1^3 , and M_3^3 . Hence, five uniaxial and/or hydrostatic diffusion experiments are required to determine fully the M_t^k in this case.